推广 热搜: 公司  快速  上海  中国    未来  企业  政策  教师  系统 

大数据江湖之即席查询与分析(下篇)--手把手教你搭建即席查询与分析Demo

   日期:2024-11-14     作者:xinet    caijiyuan   评论:0    移动:http://keair.bhha.com.cn/mobile/news/690.html
核心提示:二、操作系统安装与配置推荐安装Centos 6.5或6.6的操作系统(不要使用centos7哦),选择安装英文语言环境,安装桌面版(不要安装

 

大数据江湖之即席查询与分析(下篇)--手把手教你搭建即席查询与分析Demo

二、操作系统安装与配置

推荐安装Centos 6.5或6.6的操作系统(不要使用centos7哦),选择安装英文语言环境,安装桌面版(不要安装最简版)。

1.       配置机器名及hosts域名解析

规划三台机器为ydbmaster,ydbslave01, ydbslave02

在每台机器上按照相应名字修改:

hostname ydbmaster

vi /etc/sysconfig/network

vi /etc/hosts

切记hosts文件中 不要将localhost给注释掉,并且配置完毕后,执行下 hostname -f 看下 是否能识别出域名

2.       在每台机器上修改Ulimit配置

操作系统默认只能打开1024个文件,打开的文件超过这个数发现程序会有“too many open files”的错误,1024对于大数据系统来说显然是不够的,如果不设置,基本上整个大数据系统是“不可用的”,根本不能用于生产环境。

配置方法如下:

echo  "* soft    nofile  128000" >>/etc/security/limits.conf

echo  "* hard    nofile  128000" >>/etc/security/limits.conf

echo  "* soft    nproc  128000" >>/etc/security/limits.conf

echo  "* hard    nproc  128000" >>/etc/security/limits.conf

cat / etc /security/limits.conf

sed -i 's/1024/unlimited/'/etc/security/limits.d/90-nproc.conf

cat /etc/security/limits.d/90-nproc.conf

ulimit -SHn 128000

ulimit -SHu 128000

3.       在每台机器上一定要禁用Swap

       在10~20年前一台服务器的内存非常有限,64m~128m,所以通过Swap可以将磁盘的一部分空间用于内存。但是现今我们的服务器内存普遍达到了64G以上,内存已经不再那么稀缺,但是内存的读取速度与磁盘的读取相差倍数太大,如果我们某段程序使用的内存映射到了磁盘上,将会对程序的性能造成非常严重的影响,甚至导致整个服务的瘫痪。

       禁用方法如下,让操作系统尽量不使用swap:

echo  "vm.swappiness=1" >>/etc/sysctl.conf

sysctl -p

sysctl -a|grep swappiness

4.       在每台机器上修改网络配置优化

echo  " net.core.somaxconn = 32768 " >>/etc/sysctl.conf

sysctl –p

sysctl -a|grep somaxconn

5.       在每台机器上配置SSH无密码登录

安装 Hadoop与Ambari均需要无密码登录

设置方法请参考如下命令:

ssh-keygen

cat ~/.ssh/id_rsa.pub >>~/.ssh/authorized_keys

chmod 700 ~/.ssh

chmod 600 ~/.ssh/authorized_keys

ssh-copy-id root@ydbslave01

ssh-copy-id root@ydbslave02

…..

6.       在每台机器上关闭防火墙

iptables -P INPUT ACCEPT

iptables -P FORWARD ACCEPT

iptables -P OUTPUT ACCEPT

chkconfig iptables off

/etc/init.d/iptables stop

service iptables stop

iptables –F

7.       在每台机器上修改setenforce与Umask配置

setenforce设置:

setenforce 0

sed -i 's/enabled=1/enabled=0/' /etc/yum/pluginconf.d/refresh-packagekit.conf

cat /etc/yum/pluginconf.d/refresh-packagekit.conf

Umask设置:

umask 0022

echo umask 0022 >>/etc/profile

8.       在每台机器上修改检查/proc/sys/vm/overcommit_memory的配置值

如果为2,建议修改为0,否则有可能会出现,明明机器可用物理内存很多,但jvm确申请不了内存的情况。

9.       在每台机器上修改语言环境配置

先修改机器的语言环境

#vi /etc/sysconfig/i18n

LANG="en_US.UTF-8"SUPPORTED="zh_CN.GB18030:zh_CN:zh:en_US.UTF-8:en_US:en"SYSFONT="latarcyrheb-sun16"

然后配置环境变量为utf8

echo "exportLANG="en_US.UTF-8 " >> ~/.bashrc

source ~/.bashrc

export|grep LANG

10.   配置时间同步

集群时间必须同步,不然会有严重问题

参考资料如下:http://www.linuxidc.com/Linux/2009-02/18313.htm

11.   环境变量

请大家千万不要在公共的环境变量配置Hadoop,Hive,Spark等环境变量,极可能产生相互冲突。

12.   请检查盘符,不要含有中文

尤其是ambari,有些时候,我们使用U盘或移动硬盘复制软件,但是这个移动硬盘挂载点是中文路径,这样在安装ambari的时候会出现问题,一定要注意这个问题.

13.   在每台机器上检查磁盘空间,使用率不得超过90%

默认Yarn会为每台机器保留10%的空间,如果剩余空间较少,Yarn就会停掉这些机器上的进程,并出现Containerreleased on a *lost* node错误。

14.   在每台机器上配置关键日志要定时清理,避免磁盘爆满

如可以编辑crontab -e每小时,清理一次日志,尤其是hadoop日志,特别占用磁盘空间

0 */1 * * * find/var/log/hadoop/hdfs -type f -mmin +1440 |grep -E ".log." |xargs rm–rf

 

三、Hadoop安装与配置

考虑到原版Hadoop安装配置门槛较高,本次我们使用Hortonworks公司的HDP、Ambari来搭建Hadoop环境。

 

从Hortonworks官方下载HDP与HDP-UTILS

http://public-repo-1.hortonworks.com/HDP/centos6/2.x/updates/2.5.0.0/HDP-2.5.0.0-centos6-rpm.tar.gz

http://public-repo-1.hortonworks.com/HDP-UTILS-1.1.0.21/repos/centos6/HDP-UTILS-1.1.0.21-centos6.tar.gz

http://public-repo-1.hortonworks.com/ambari/centos6/2.x/updates/2.4.1.0/ambari-2.4.1.0-centos6.tar.gz

 

准备好系统安装盘.iso文件或者系统yum源

配置示例:

mkdir -p/opt/ydbsoftware/centosyum

mount -o loop/opt/ydbsoftware/CentOS-6.6-x86_64-bin-DVD1.iso /opt/ydbsoftware/centosyum

 

从http://url.cn/42R4CG8获取

 

  • 延云YDB
  • 延云优化过的Spark(原版Spark有很多bug哦,以后会写相关专题)
  • JDK1.8

 

解压spark1.6.3_hadoop2.7.3.tar.gz,解压ya100.1.x.x.zip

解压后一定要放在/opt/ydbsoftware目录下

注意观察,如下三个目录是否存在

/opt/ydbsoftware/spark1.6.3_hadoop2.7.3

/opt/ydbsoftware/jdk1.8.0_60

/opt/ydbsoftware/ya100/bin

 

1.       安装JDK

将安装包中的JDK安装到/opt/ydbsoftware/jdk1.8.0_60

分发到每台机器上,且路径统一为/opt/ydbsoftware/jdk1.8.0_60

2.       软件上传到服务器

确认将全部软件已经上传到/opt/ydbsoftware目录下,不能随意更改/opt/ydbsoftware路径。

3.       配置HTTP服务(在解压后的目录执行)

cd /opt/ydbsoftware

nohup python -m SimpleHTTPServer &

4.       配置YUM源

备份旧的YUM源

cd /etc/yum.repos.d

mkdir -p bak

mv *.repo bak/

 

配置ambari源与本地系统源,每台机器都要配置,ambari.repo文件名不得更改,本地系统源很重要,一定要配置

配置示例如下:

cat << EOF >/etc/yum.repos.d/ambari.repo

[centoslocal]

name=centoslocal

baseurl=http://ydbmaster:8000/centosyum

gpgcheck=0

[AMBARI]

name=AMBARI

baseurl=http://ydbmaster:8000/AMBARI-2.4.1.0/centos6/2.4.1.0-22

gpgcheck=0

[HDP]

name=HDP

baseurl=http://ydbmaster:8000/HDP/centos6

gpgcheck=0

[HDP-UTILS]

name=HDP-UTILS

baseurl=http://ydbmaster:8000/HDP-UTILS-1.1.0.21/repos/centos6

gpgcheck=0

EOF

5.       安装与配置ambari-server(只需要在一台机器安装)

yum cleanall

yum makecache

yum repolist

yum installambari-server

6.       配置Ambari

ambari-server setup

除JDK需单独指定外,都默认

7.       启动ambari-server

ambari-server start

然后就可以打开http://xx.xx.xx.xx:8080 安装hadoop了

默认用户名与密码均为admin

8.       开始创建集群

9.       配置HDP源

选择HDP版本为HDP2.5

10.   部署的机器列表与登录私钥配置

 

11.   部署Ambari-Agent

如有警告,要注意处理

 

12.   选择安装部署服务

 

服务分配

13.   配置HDFS

14.    配置YARN

15.    配置MapReduce

 

16.    配置ZooKeeper

17.    AmbariMetrics 配置

 

18.    完成HDP部署

 

四、YDB安装与配置

1.       安装YDB

ln -s /opt/ydbsoftware/spark1.6.3_hadoop2.7.3/opt/ydbsoftware/spark

cd /opt/ydbsoftware/ya100/bin

sh https://www.cnblogs.com/hd-zg/p/hdp_install.sh

2.       通过Ambari配置YDB 

 

A配置:基本配置

B组配置:环境路径配置

C配置:存储相关路径配置

开始安装

安装完毕

检查YDB是否启动成功

在这里可以看到每台机器的健康状态,内存使用情况等,如果有异常这里会有提示,红色表示是比较严重的错误,紫色表示警告,其他颜色可以忽略。

正常没有错误的页面是这样的:

状态异常状态是这样的:

 

至此,基础环境已经搭建完毕,开始导入数据。

 

五、数据导入

1.       YDB自带伪造数据jar包,生成比较简单的本次Demo测试数据

hadoopfs -mkdir /data/example/jiaotong_txt/

hadoop jarhttps://www.cnblogs.com/hd-zg/p/lib/ydb-1.1.6-pg.jar

cn.net.ycloud.ydb.server.reader.kafka.importexample.YdbJiaotong500000 /data/example/jiaotong_txt/1yi.txt

 

2.  链接JDBC客户端

sh bin/conn.sh

 

3.  创建HIVE外部表,并将伪造的txt文件导入HIVE表

hphm为号牌号码,kkbh为卡口编号,jgsj为经过时间,jgsk为经过时刻,quyu为卡口位置

create external tablejiaotong_txt(

hphm  string,

kkbh  bigint,

jgsj  bigint,

jgsk  bigint,

quyu  string

)

row format delimited fieldsterminated by ','

stored as

INPUTFORMAT'cn.net.ycloud.ydb.handle.YdbCombineInputFormat'OUTPUTFORMAT'org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat'

location'/data/example/jiaotong_txt'

TBLPROPERTIES('ydb.combine.input.format.raw.format'='org.apache.hadoop.mapred.TextInputFormat'

);

 

4.  创建YDB表,额外定义两列‘_str’的列,用于Groupby等操作,YDB中的分词数据类型不能Groupby

 

create table jiaotong_ydb(

hphm_str string,

hphm  chepai,

kkbh  tlong,

jgsj  tlong,

jgsk  tlong,

quyu_str  string,

quyu  simpletext

)

;

5.  向YDB表导入数据,本次测试机有其他测试在跑,导入时间不具备参考价值

insert overwrite tableydbpartion

select 'jiaotong_ydb', '1yi','',

YROW(

'hphm_str' , hphm ,

'hphm'     , hphm ,

'kkbh'     , kkbh ,

'jgsj'     , jgsj ,

'jgsk'     , jgsk ,

'quyu_str' , quyu ,

'quyu'     , quyu

)

from jiaotong_txt;

 

6.  验证YDB中的数据

成对的,,是YDB特殊标识

 

selectcount(*) from jiaotong_ydb

whereydbpartion = '1yi'

;

 

selecthphm_str,hphm,kkbh,jgsj,jgsk,quyu_str,quyu from jiaotong_ydb

where ydbpartion = '1yi'order by jgsj desc limit 10

;

 

六、机动车缉查布控即席查询与分析的典型场景

以下典型场景在“大数据江湖之即席查询与分析(中篇)”中有过详细的讲解与分析,这里不再赘述,直接给出实现方法。

1.  重点/指定车辆行车轨迹即席查询与分析

with tmp as (

selecthphm,kkbh,jgsj,jgsk,quyu from jiaotong_ydb

where ydbpartion = '1yi' andhphm='广K66457' order by jgsj desc

)

select hphm, kkbh, jgsj,jgsk, quyu

from tmp order by jgsj desclimit 10;

 

2.  同行车辆即席查询与分析

with tmp as (

select hphm, jgsj, kkbh fromjiaotong_ydb

where  ydbpartion = '1yi' and

( (jgsj like '([201607200902TO 201607201102])' and kkbh=57230)

or (jgsj like '([201607200847TO 201607201047])' and kkbh=30895)

or (jgsj like '([201607200812TO 201607201012])' and kkbh=29479)  )

)

select * from (

select tmp.hphm, count(*) asrows, size(collect_set(tmp.kkbh)) as dist_kkbh

, concat_ws('#',sort_array(collect_set(concat_ws(',',tmp.jgsj,tmp.kkbh)))) as detail

from tmp group by tmp.hphm )tmp2

where tmp2.dist_kkbh>=2order by dist_kkbh desc limit 10;

 

3.  区域碰撞分析

with tmp as (

select hphm,jgsj,quyu fromjiaotong_ydb

where ydbpartion = '1yi' and

( (jgsj like '([201607200902TO 201607201102])' and quyu='光华路汇统花园')

or (jgsj like '([201607200847TO 201607201047])' and quyu='东明路鑫兆雅园')

or (jgsj like '([201607200812TO 201607201012])' and quyu='川巷路城市月光')  )

)

select

tmp.hphm, count(*) as rows,size(collect_set(tmp.quyu)) as dist_quyu, concat_ws('#',sort_array(collect_set(concat_ws(',',tmp.jgsj,tmp.quyu))))as detail

from tmp group by tmp.hphmorder by dist_quyu desc limit 10;

 

4.  昼伏夜出、落脚点分析

with tmp as (

select jgsk,jgsj,quyu fromjiaotong_ydb where ydbpartion = '1yi' and hphm='广K66457'

)

select

tmp.jgsk, count(*) as rows,size(collect_set(tmp.quyu)) as dist_quyu, concat_ws('#',sort_array(collect_set(concat_ws(',',tmp.jgsj,tmp.quyu))))as detail

from tmp group by tmp.jgskorder by dist_quyu desc limit 10;

 

5.  陌生车辆分析

with tmp as (

select hphm,jgsj,quyu fromjiaotong_ydb

where ydbpartion = '1yi' and( quyu='光华路汇统花园' and jgsj<=201607201002 )

)

select * from (

select tmp.hphm, count(*) asrows, max(tmp.jgsj) as max_jgsj

, size(collect_set(tmp.jgsj))as dist_jgsj, concat_ws('#',sort_array(collect_set(concat_ws(',',tmp.jgsj))))as detail

from tmp group by tmp.hphm )tmp2

wheretmp2.max_jgsj>201604111705 order by tmp2.dist_jgsj asc limit 10;

 

       至此即完成了手把手教你搭建即席查询与分析Demo,举出的几个典型场景来抛砖引玉,更多场景请小伙伴们自行发挥。没有搭建成功或者遇到问题的小伙伴,请加QQ群求助或交流:171465049(验证口令为vv8086的csdn博客)或在此给我评论留言。

       本次Demo的重点在于讲解Demo环境的搭建过程,所测试出的性能并不是最优的,“即席查询与分析性能调优”这部分我会出系列文章跟大家深入探讨,一步一步来教大家如何实现“万亿秒查”。这里先贴出一张YDB与SparkSQL和Parquet的性能对比,供大家参考!

本文地址:http://keair.bhha.com.cn/news/690.html    康宝晨 http://keair.bhha.com.cn/ , 查看更多

特别提示:本信息由相关用户自行提供,真实性未证实,仅供参考。请谨慎采用,风险自负。

 
 
更多>同类最新资讯
0相关评论

文章列表
相关文章
最新动态
推荐图文
最新资讯
点击排行
网站首页  |  关于我们  |  联系方式  |  使用协议  |  版权隐私  |  网站地图  |  排名推广  |  广告服务  |  积分换礼  |  网站留言  |  RSS订阅  |  违规举报  |  粤ICP备2023022329号