在现实世界中,绝大多数的数据都是以非结构化数据的形式存在,如图片,音频,视频,文本等。这些非结构化数据随着智慧城市、短视频、商品个性化推荐、视觉商品搜索等应用的出现而爆发式增长。为了能够处理这些非结构化数据,通常会使用人工智能技术提取这些非结构化数据的特征,并将其转化为特征向量,再对这些特征向量进行分析和检索以实现对非结构化数据的处理。通过构建云原生数据仓库向量检索引擎和中文CLIP模型组成以文搜图的方案体验,实现高性能图文多模态检索,从而体验向量检索在业务场景的能力和高性能。
在现实世界中,绝大多数的数据都是以非结构化数据的形式存在,如图片,音频,视频,文本等。这些非结构化数据随着智慧城市、短视频、商品个性化推荐、视觉商品搜索等应用的出现而爆发式增长。为了能够处理这些非结构化数据,通常会使用人工智能技术提取这些非结构化数据的特征,并将其转化为特征向量,再对这些特征向量进行分析和检索以实现对非结构化数据的处理。通过构建云原生数据仓库向量检索引擎和中文CLIP模型组成以文搜图的方案体验,实现高性能图文多模态检索,从而体验向量检索在业务场景的能力和高性能。