- 预备知识
学习者需要预先掌握Python的数字类型、字符串类型、分支、循环、函数、列表类型、字典类型、文件和第三方库使用等概念和编程方法。
a. 发送请求
使用http库向目标站点发起请求,即发送一个Request,Request包含:请求头、请求体等。
Request模块缺陷:不能执行JS 和CSS 代码。
b. 获取响应内容
如果requests的内容存在于目标服务器上,那么服务器会返回请求内容。
Response包含:html、Json字符串、图片,视频等。
c. 解析内容
对用户而言,就是寻找自己需要的信息。对于Python爬虫而言,就是利用正则表达式或者其他库提取目标信息。
解析html数据:正则表达式(RE模块),第三方解析库如Beautifulsoup,pyquery等
解析json数据:json模块
解析二进制数据:以wb的方式写入文件
d. 保存数据
解析得到的数据可以多种形式,如文本,音频,视频保存在本地。
数据库(MySQL,Mongdb、Redis)
文件
Requests是用python语言基于urllib编写的,采用的是Apache2 Licensed开源协议的HTTP库。
3.1 Requests库安装和测试
安装:
Win平台:以“管理员身份运行cmd”,执行 pip install requests
测试:
3.2 Requests库的7个主要方法
带可选参数的请求方式:
requests.request(method,url,**kwargs)
method:请求方式,对应get/put/post等7种
url:获取页面的url链接
**kwargs:控制访问的参数,均为可选项,共以下13个
params:字典或字节系列,作为参数增加到url中
data:字典、字节系列或文件对象,作为requests的内容
json:JSON格式的数据,作为equests的内容
headers:字典,HTTP定制头
cookies:字典或cookieJar,Request中的cookie
files:字典类型,传输文件
timeout:设置超时时间,秒为单位。
proxies:字典类型,设置访问代理服务器,可以增加登录验证。
allow_redirects:True/False,默认为True,重定向开关
stream:True/False,默认为True,获取内容立即下载开关
verify:rue/False,默认为True,认证SSL证书开关
Cert:本地SSL证书路径
auth:元组类型,支持HTTP认证功能
3.3 Requests库的get()方法
3.4 Requests的Response对象
Response对象包含服务器返回的所有信息,也包含请求的Request信息
Response对象的属性
3.5 理解Response的编码
注意:编码为ISO-8859-1不支持编译中文,需要设置 r = encoding=“utf-8”
3.6 理解Requests库的异常
Requests库支持常见的6种连接异常
注意:网络连接有风险。异常处理很重要。raise_for_status()如果不等于200则产生异常requests.HTTPError。
3.7 爬取网页的通用代码框架
- 网络爬虫的“盗亦有道”:Robots协议
robots是网站跟爬虫间的协议,robots.txt(统一小写)是一种存放于网站根目录下的ASCII编码的文本文件,它通常告诉网络搜索引擎的漫游器(又称网络蜘蛛),此网站中的哪些内容是不应被搜索引擎的漫游器获取的,哪些是可以被漫游器获取的。因为一些系统中的URL是大小写敏感的,所以robots.txt的文件名应统一为小写。robots.txt应放置于网站的根目录下。
网络爬虫的尺寸:
4.1 网络爬虫引发的问题
a. 网络爬虫的“性能”骚扰
web默认接受人类访问,由于网络爬虫的频繁访问会给服务器带来巨大的额资源开销。
b. 网络爬虫的法律风险
服务器上的数据有产权归属,网络爬虫获取数据牟利将带来法律风险
c. 网络爬虫的隐私泄露
网络爬虫可能具备突破简单控制访问的能力,获取被保护的数据从而泄露个人隐私。
4.2 网络爬虫限制
a. 来源审查:判断User-Agent进行限制
检查来访HTTP协议头的user-agent域,只响应浏览器或友好爬虫的访问
b. 发布公告:Robots协议
告知所有爬虫网站的爬取策略,要求遵守Robots协议
4.3 真实的Robots协议案例
京东的Robots协议:
https://www.jd.com/robots.txt
#注释,*代表所有,/代表根目录
4.4 robots协议的遵守方式
对robots协议的理解
自动或人工识别roboes.txt,z再进行内容爬取。
robots协议是建议但非约束性,网络爬虫可以补遵守,但存在法律风险。
原则:人类行为可以补参考robots协议,比如正常阅览网站,或者较少爬取网站频率。
- Requests库网络爬虫实战
5.1 京东商品页面爬取
目标页面地址:https://item.jd.com/5089267.html
实例代码:
结果:
5.2 当当网商品页面爬取
目标页面地址:http://product.dangdang.com/26487763.html
代码:
出现报错:
HTTPConnectionPool(host=‘127.0.0.1’, port=80): Max retries exceeded with url: /26487763.html (Caused by NewConnectionError(‘<urllib3.connection.HTTPConnection object at 0x10fc390>: Failed to establish a new connection: [Errno 111] Connection refused’,))
报错原因:当当网拒绝不合理的浏览器访问。
查看初识的http请求头:
print(r.request.headers)
代码改进:构造合理的HTTP请求头
结果正常爬取:
5.3 百度360搜索引擎关键词提交
百度关键词接口:http://www.baidu.com/s?wd=keyword
360关键词接口:
http://www.so.com/s?q=keyword
5.4 网络图片爬取和存储
网络图片链接的格式:
http://FQDN/picture.jpg
校花网:http://www.xiaohuar.com
选择一个图片地址:http://www.xiaohuar.com/d/file/20141116030511162.jpg
查看图片已经存在:
5.5 ip地址归属地查询
ip地址归属地查询网站接口:http://www.ip138.com/ips138.asp?ip=
5.5 有道翻译翻译表单提交
打开有道翻译,在开发者模式依次单击“Network”按钮和“XHR”按钮,找到翻译数据:
6.1 简介
Beautiful Soup提供一些简单的、python式的函数用来处理导航、搜索、修改分析“标签树”等功能。它是一个工具箱,通过解析文档为用户提供需要抓取的数据,因为简单,所以不需要多少代码就可以写出一个完整的应用程序。
Beautiful Soup自动将输入文档转换为Unicode编码,输出文档转换为utf-8编码。你不需要考虑编码方式,除非文档没有指定一个编码方式,这时,Beautiful Soup就不能自动识别编码方式了。然后,你仅仅需要说明一下原始编码方式就可以了。
Beautiful Soup已成为和lxml、html6lib一样出色的python解释器,为用户灵活地提供不同的解析策略或强劲的速度。
6.2 Beautiful Soup安装
目前,Beautiful Soup的最新版本是4.x版本,之前的版本已经停止开发,这里推荐使用pip来安装,安装命令如下:
pip install beautifulsoup4
验证安装:
from bs4 import BeautifulSoup
soup = BeautifulSoup(‘
Hello
’,‘html.parser’)print(soup.p.string)
执行结果如下:
Hello
注意:这里虽然安装的是beautifulsoup4这个包,但是引入的时候却是bs4,因为这个包源代码本身的库文件名称就是bs4,所以安装完成后,这个库文件就被移入到本机Python3的lib库里,识别到的库文件就叫作bs4。
因此,包本身的名称和我们使用时导入包名称并不一定是一致的。
6.3 BeautifulSoup库解析器
如果使用lxml,在初始化BeautifulSoup时,把第二个参数改为lxml即可:
6.4 BeautifulSoup的基本用法
BeautifulSoup类的基本元素
实例展示BeautifulSoup的基本用法:
6.5 标签树的遍历
标签树的下行遍历
标签树的上行遍历:遍历所有先辈节点,包括soup本身
标签树的平行遍历:同一个父节点的各节点间
实例演示:
正则表达式是处理字符串的强大工具,它有自己特定的语法结构,实现字符串的检索、替换、匹配验证都可以。对于爬虫来说,
从HTML里提取想要的信息非常方便。python的re库提供了整个正则表达式的实现
7.1 案例引入
这里介绍一个正则表达式测试工具http://tool.oschina.net/regex,输入待匹配的文本,然选择常用的正则表达式,得到相应的匹配结果,
适合新手入门。这里输入:
hello,my phone is 18898566588 and email is david@gmail.com, and wen is https://www.cnblogs.com/wenwei-blog/
点击“匹配Email地址”,即可匹配出网址。
7.2 常用正则表达式匹配规则
‘.’ 匹配所有字符串,除 以外
‘-’ 表示范围[0-9]
‘*’ 匹配前面的子表达式零次或多次。要匹配 * 字符,请使用 *。
‘+’ 匹配前面的子表达式一次或多次。要匹配 + 字符,请使用 +
‘^’ 匹配字符串开头
‘$’ 匹配字符串结尾 re
‘’ 转义字符, 使后一个字符改变原来的意思,如果字符串中有字符*需要匹配,可以*或者字符集[*] re.findall(r’3*',‘3*ds’)结[‘3*’]
‘*’ 匹配前面的字符0次或多次 re.findall(“ab*”,“cabc3abcbbac”)结果:[‘ab’, ‘ab’, ‘a’]
‘?’ 匹配前一个字符串0次或1次 re.findall(‘ab?’,‘abcabcabcadf’)结果[‘ab’, ‘ab’, ‘ab’, ‘a’]
‘{m}’ 匹配前一个字符m次 re.findall(‘cb{1}’,‘bchbchcbfbcbb’)结果[‘cb’, ‘cb’]
‘{n,m}’ 匹配前一个字符n到m次 re.findall(‘cb{2,3}’,‘bchbchcbfbcbb’)结果[‘cbb’]
‘d’ 匹配数字,等于[0-9] re.findall(‘d’,‘电话:10086’)结果[‘1’, ‘0’, ‘0’, ‘8’, ‘6’]
‘D’ 匹配非数字,等于[^0-9] re.findall(‘D’,‘电话:10086’)结果[‘电’, ‘话’, ‘:’]
‘w’ 匹配字母和数字,等于[A-Za-z0-9] re.findall(‘w’,‘alex123,https://blog.csdn.net/zw666284/article/details/;;;’)结果[‘a’, ‘l’, ‘e’, ‘x’, ‘1’, ‘2’, ‘3’]
‘W’ 匹配非英文字母和数字,等于[^A-Za-z0-9] re.findall(‘W’,‘alex123,https://blog.csdn.net/zw666284/article/details/;;;’)结果[‘,’, ‘.’, ‘/’, ‘;’, ‘;’, ‘;’]
‘s’ 匹配空白字符 re.findall(‘s’,‘3*ds ’)结果[’ ', ‘ ’, ‘ ’]
‘S’ 匹配非空白字符 re.findall(‘s’,‘3*ds ’)结果[‘3’, ‘*’, ‘d’, ‘s’]
‘A’ 匹配字符串开头
‘Z’ 匹配字符串结尾
匹配衣蛾制表符
‘b’ 匹配单词的词首和词尾,单词被定义为一个字母数字序列,因此词尾是用空白符或非字母数字符来表示的
‘B’ 与b相反,只在当前位置不在单词边界时匹配
‘(?P…)’ 分组,除了原有编号外在指定一个额外的别名 re.search(“(?P[0-9]{4})(?P[0-9]{2})(?P[0-9]{8})”,“371481199306143242”).groupdict(“city”) 结果{‘province’: ‘3714’, ‘city’: ‘81’, ‘birthday’: ‘19930614’}
[] 是定义匹配的字符范围。比如 [a-zA-Z0-9] 表示相应位置的字符要匹配英文字符和数字。[s*]表示空格或者*号。
常用的re函数:
[^…] 不在[]中的字符,比如[^abc]匹配除了a、b、c之外的字符。
.* 具有贪婪的性质,首先匹配到不能匹配为止,根据后面的正则表达式,会进行回溯。
.*? 满足条件的情况只匹配一次,即懒惰匹配。
7.3 常用匹配方法属性函数
方法/属性 作用 re.match(pattern, string, flags=0) 从字符串的起始位置匹配,如果起始位置匹配不成功的话,match()就返回none re.search(pattern, string, flags=0) 扫描整个字符串并返回第一个成功的匹配 re.findall(pattern, string, flags=0) 找到RE匹配的所有字符串,并把他们作为一个列表返回 re.finditer(pattern, string, flags=0) 找到RE匹配的所有字符串,并把他们作为一个迭代器返回 re.sub(pattern, repl, string, count=0, flags=0) 替换匹配到的字符串函数参数说明:
pattern:匹配的正则表达式
string:要匹配的字符串
flags:标记为,用于控制正则表达式的匹配方式,如:是否区分大小写,多行匹配等等。
repl:替换的字符串,也可作为一个函数
count:模式匹配后替换的最大次数,默认0表示替换所有匹配
例子1:
获取匹配的函数:
re模块中分组的作用?
(1)判断是否匹配(2)灵活提取匹配到各个分组的值。
7.4 re.compile 函数
compile 函数用于编译正则表达式,生成一个正则表达式( Pattern )对象。语法格式:
re.compile(pattern[, flags])
参数:
pattern : 一个字符串形式的正则表达式
flags : 可选,表示匹配模式,比如忽略大小写,多行模式等,具体参数为:
re.I 忽略大小写
re.L 表示特殊字符集 w, W, b, B, s, S 依赖于当前环境
re.M 多行模式
re.S 即为 . 并且包括换行符在内的任意字符(. 不包括换行符)
re.U 表示特殊字符集 w, W, b, B, d, D, s, S 依赖于 Unicode 字符属性数据库
re.X 为了增加可读性,忽略空格和 # 后面的注释
常用的是re.I和re.S
7.5 爬取猫眼电影TOP排行
利用requests库和正则表达式来抓取猫眼电影TOP100的相关内容。requests比urllib使用更加方便。
抓取目标
提取猫眼电影TOP的电影名称、时间、评分 、图片等信息。提取的站点URL为https://maoyan.com/board/4
提取结果已文件形式保存下来。
URL提取分析
打开站点https://maoyan.com/board/4,直接点击第二页和第三页,观察URL的内容产生的变化。
第二页:https://maoyan.com/board/4?offset=10
第三页:https://maoyan.com/board/4?offset=20
总结出规律,唯一变化的是offset=x,如果想获取top100电影,只需分开请求10次,offset参数分别设置为0、10、20…90即可。
源码分析和正则提取
打开网页按F12查看页面源码,可以看到,一部电影信息对应的源代码是一个dd节点,首先需要提取排名信息,排名信息在class为board-index的i节点内,这里使用懒惰匹配提取i节点内的信息,正则表达式为:
.*?board-index.*?>(.*?)随后提取电影图片,可以看到后面有a节点,其内部有两个img节点,经过检查后发现,第二个img节点的data-src属性是图片的链接。这里提取第二个img节点的data-src属性,正则表达式改写如下:
.*?board-index.*?>(.*?).*?data-src="(.*?)".*?name.*?a.*?>(.*?)再提取主演、发布时间、评分等内容时,都是同样的原理。最后,正则表达式写为:
.*?board-index.*?>(.*?).*?data-src="(.*?)".*?name.*?a.*?>(.*?).*?star.*?>(.*?).*?releasetime.*?>(.*?).*?integer.*?>(.*?).*?fraction.*?>(.*?).*?注意:这里不要在Element选项卡中直接查看源码,因为那里的源码可能经过Javascript操作而与原始请求不通,而是需要从NetWork选项卡部分查看原始请求得到的源码。
代码整合
Scrapy是一个为了爬取网站数据,提取结构性数据而编写的应用框架。 其可以应用在数据挖掘,信息处理或存储历史数据等一系列的程序中。
其最初是为了页面抓取 (更确切来说, 网络抓取 )所设计的, 也可以应用在获取API所返回的数据(例如 Amazon Associates Web Services ) 或者通用的网络爬虫。Scrapy用途广泛,可以用于数据挖掘、监测和自动化测试。Scrapy 使用了 Twisted异步网络库来处理网络通讯。整体架构大致如下
Scrapy主要包括了以下组件:
- 引擎(Scrapy)
用来处理整个系统的数据流处理, 触发事务(框架核心) - 调度器(Scheduler)
用来接受引擎发过来的请求, 压入队列中, 并在引擎再次请求的时候返回. 可以想像成一个URL(抓取网页的网址或者说是链接)的优先队列, 由它来决定下一个要抓取的网址是什么, 同时去除重复的网址 - 下载器(Downloader)
用于下载网页内容, 并将网页内容返回给蜘蛛(Scrapy下载器是建立在twisted这个高效的异步模型上的) - 爬虫(Spiders)
爬虫是主要干活的, 用于从特定的网页中提取自己需要的信息, 即所谓的实体(Item)。用户也可以从中提取出链接,让Scrapy继续抓取下一个页面 - 项目管道(Pipeline)
负责处理爬虫从网页中抽取的实体,主要的功能是持久化实体、验证实体的有效性、清除不需要的信息。当页面被爬虫解析后,将被发送到项目管道,并经过几个特定的次序处理数据。 - 下载器中间件(Downloader Middlewares)
位于Scrapy引擎和下载器之间的框架,主要是处理Scrapy引擎与下载器之间的请求及响应。 - 爬虫中间件(Spider Middlewares)
介于Scrapy引擎和爬虫之间的框架,主要工作是处理蜘蛛的响应输入和请求输出。 - 调度中间件(Scheduler Middewares)
介于Scrapy引擎和调度之间的中间件,从Scrapy引擎发送到调度的请求和响应。
Scrapy运行流程大概如下:
- 引擎从调度器中取出一个链接(URL)用于接下来的抓取
- 引擎把URL封装成一个请求(Request)传给下载器
- 下载器把资源下载下来,并封装成应答包(Response)
- 爬虫解析Response
- 解析出实体(Item),则交给实体管道进行进一步的处理
- 解析出的是链接(URL),则把URL交给调度器等待抓取
scrapy常用命令
scrapy startproject <爬虫名称> 创建爬虫名称(唯一)
scrapy genspider<爬虫项目名称> 创建爬虫项目名称
scrapy list 列出所有爬虫名称
scrapy crawl <爬虫名称> 运行爬虫
8.1 scrapy爬虫项目一:爬取豆瓣电影TOP250
爬取目标:电影排名、电影名称、电影评分、电影评论数
创建爬虫项目和爬虫
scrapy startproject DoubanMovieTop
cd DoubanMovieTop
scrapy genspider douban
修改默认“user-agent”和reboots为True
修改settings.py文件以下参数:
Item使用简单的class定义语法以及Field对象来声明。
写入下列代码声明Item
分析网页源码抓取所需信息
运行爬虫写入文件中